
Published on LabJack (https://labjack.com)

Home > Support > Datasheets > T-Series Datasheet > 3.0 Communication

3.0 Communication [T-Series Datasheet]
Log in or register to post comments

Overview

T-series devices communicate through a protocol named Modbus TCP, which is used via USB, Ethernet, and
WiFi (T7-Pro only). "Modbus TCP" is commonly shortened to "Modbus" in this document.

Modbus TCP is a protocol where values are written to and/or read from Modbus registers. Any given Modbus
register is readable, writable, or both.

All T-series device configurations and data is read from and/or written to Modbus register(s). Thus, the process
for reading the serial number, an analog input, or a waveform is functionally the same, you simply provide a
different address.

Communication Options

The software used to communicate with a T-series device depends on what tasks need to be performed.

Applications

Applications are appropriate for common and simple tasks.

LabJack Kipling provides a graphical interface for many types of device configuration. It also provides a
Register Matrix which can read or write arbitrary register values.

LabJack LJLogM periodically samples and logs data.

LabJack LJStreamM streams data at much higher sampling rates.

High-level LJM library

Programming with the LJM library is appropriate for custom, complex, and automated tasks.

LJM is a cross-platform library which allows users to access registers by name, such as "AIN4" for analog
input 4. With example code in over a dozen different programming languages, it is possible to integrate the
T4 and T7 into a variety of existing software frameworks.

Example workflow:

1. Open a connection to the T4/T7.
2. Read from and write to Modbus registers.
3. Close the connection.

19 May 2019

https://labjack.com
https://labjack.com/
https://labjack.com/support
https://labjack.com/support/datasheets
https://labjack.com/support/datasheets/t-series
https://labjack.com/user/login?destination=node/3123%23comment-form
https://labjack.com/user/register?destination=node/3123%23comment-form
https://labjack.com/support/software/applications/t-series/kipling
https://labjack.com/support/software/applications/t-series/kipling/register-matrix
https://labjack.com/support/software/applications/t-series/ljlogm
https://labjack.com/support/software/applications/t-series/ljstreamm
https://labjack.com/support/ljm
https://labjack.com/support/software/examples/ljm
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/software/api/ljm/function-reference/ljmereadname
https://labjack.com/support/software/api/ljm/function-reference/ljmewritename
https://labjack.com/support/datasheets/t7/communication/modbus-map
https://labjack.com/support/ljm/users-guide/function-reference/ljmclose

Direct Modbus TCP, Clients

T-series devices are Modbus TCP servers. Any software capable of acting as a Modbus TCP client can
read from and write to a Modbus TCP server. For example, all software we know of that describes itself as
"SCADA" is capable of being a Modbus TCP client and can talk to T-series devices.

It is straightforward to integrate a T-series device, over Ethernet or WiFi (not USB), into standard
commercial off-the-shelf (COTS) Modbus client platforms. People who already use Modbus software will
find this option convenient. Some COTS Modbus clients are very powerful, and will save users the time
and money required to develop their own software.

A Modbus TCP client can read/write any single-value numeric register without any driver software or
libraries from us. More complex registers such as strings and arrays will be difficult if not impossible to use
from a standard Modbus client, which notably prohibits stream mode and serial protocols. Custom
Modbus clients, however, can realize all functionality.

Typical workflow:

1. Configure the power-up-default registers on the T4 or T7 using the Kipling software program.
Change Ethernet/WiFi IP settings, any relevant analog input settings, etc. Note that '..._DEFAULT'
registers indicate that they are power-up-defaults.

2. Open COTS Modbus client program.
3. Specify the Modbus registers by address, such as 6, for AIN3. Find applicable registers with the

register look-up tool (Modbus map), or by referencing the datasheet etc.
4. See data directly from the T4 or T7 in COTS software.

For more details, see the Software Options page.

Communication Speed Considerations

There are two alternate methods for data transfer to occur.

Command-response offers the lowest latency.
Streaming offers the highest data throughput.

The LJM library simplifies both command-response and stream mode.

COTS Direct Modbus software uses command-response and is unlikely to be capable of stream mode.

Command-Response

This is the default mode for communication with a device. It is the simplest communication mode.

Communication is initiated by a command from the host which is followed by a response from the device. In
other words, data transfer is paced by the host software. Command-response is generally used at 1000
scans/second or slower, which is often a sufficient data throughput.

Command-response mode is generally best for minimum-latency applications such as feedback control.
Latency, in this context, means the time from when a reading is acquired to when it is available in the host
software. A reading or group of readings can be acquired in times on the order of a millisecond. See Appendix
A-1 for details on command-response data rates.

Stream Mode

19 May 2019

https://labjack.com/support/modbus/programming
https://labjack.com/support/modbus/clients
https://labjack.com/support/kipling
https://labjack.com/support/datasheets/t7/ethernet
https://labjack.com/support/datasheets/t7/wifi
https://labjack.com/support/datasheets/t7/communication/modbus-map
https://labjack.com/support/t4-software-options
https://labjack.com/support/datasheets/t7/appendix-a-1

Stream mode is generally best for maximum-throughput applications. However, streaming is usually not
recommended for feedback control operations, due to the latency in data recovery. Data is acquired very fast,
but to sustain the fast rates it must be buffered and moved from the device to the host in large chunks.

Stream mode is a continuous hardware-paced input mode where a list of addresses is scanned at a specified
scan rate. The scan rate specifies the interval between the beginning of each scan. The samples within each
scan are acquired as fast as possible. Since samples are collected automatically by the device, they are
placed in a buffer on the device, until retrieved by the host. Stream mode is generally used when command-
response is not fast enough. For the T7-Pro, stream mode is not supported on the hi-res converter (resolutions
9-12 not supported in stream).

For example, a typical stream application might set up the device to acquire a single analog input at 100,000
samples/second. The device moves this data to the host in chunks of samples. The LJM library moves data
from the USB host memory to the software memory in chunks of 2000 samples. The user application might
read data from memory once a second in a chunk of 100,000 samples. The computer has no problem
retrieving, processing, and storing, 100k samples once per second, but it could not do that with a single sample
100k times per second. See Appendix-A-1 for details on stream mode data rates.

Command-response can be done while streaming, but streaming needs exclusive control of the analog input
system, so analog inputs (including the internal temperature sensor) cannot be read via command-response
while a stream is running.

3.1 Modbus Map [T-Series Datasheet]
Log in or register to post comments

Modbus Map Tool

19 May 2019

https://labjack.com/support/datasheets/t7/appendix-a-1
https://labjack.com/user/login?destination=node/3124%23comment-form
https://labjack.com/user/register?destination=node/3124%23comment-form

Device: All Devices

Tags:

All Tags
AIN
AIN_EF
ASYNCH
CONFIG
CORE
DAC
DIO
DIO_EF
ETHERNET
FILE_IO

Expand addresses:

An error has occurred.

The filter and search tool above displays information about the Modbus registers of T-series devices.

Name: The string name that can be used with the LJM library to access each register.
Address: The starting address of each register, which can be used through LJM or with direct Modbus.
Details: A quick description of the register.
Type: Specifies the datatype, which specifies how many registers each value uses.
Access: Each register is readable, writable, or both.
Tags: Used to associate registers with particular functionality. Useful for filtering.

For the U3, U6 and UE9, see the deprecated Modbus system called UD Modbus.

For a printer-friendly version, see the printable Modbus map.

Also On This Page

0-Based Addressing
Single Overlapping Map of Addresses from 0-65535
Big-Endian
Data Type Constants
Sequential Addresses
ljm_constants.json

Usage

19 May 2019

https://labjack.com/support/modbus/ud-modbus
https://labjack.com/support/software/api/modbus/modbus-map/printable

T-series devices are controlled by reading or writing Modbus registers as described on the Communication
page.

Protocol

Modbus protocol is described on the Protocol Details page.

0-Based Addressing

The addresses defined in the map above are the same addresses in the actual Modbus packet, and range
from 0 to 65535.

Some clients subtract 1 from all addresses. You tell the client you want to read address 2000, but the client
puts 1999 in the actual Modbus packet. That means if you want to read Modbus address 2000, you have to tell
the client 2001. We use 0-65535 addressing everywhere, so if you want to read an address we document as
2000, then 2000 should be in the Modbus packet.

Single Overlapping Map of Addresses from 0-65535

We have a single map of addresses from 0 to 65535. Any type of register can be located anywhere in that
range regardless of data type or whether it is read-only, write-only, or read-write.

Some client software uses addresses written as 4xxxx. In this case, the 4 is a special code that means to use
the Modbus read function 0x03 and the xxxx is an address from 0-9999 that might additionally have 1
subtracted before being put in the Modbus packet. The magic number of 40000 (or 40001) has no mention in
the Modbus spec that we can find. What this means in terms of how to talk to the LabJack depends on what
exactly the client is doing, but if you want to read from an address we have defined as x (0-65535), then x
should be the address in the Modbus packet sent out over TCP.

Big-Endian

Modbus is specified as big-endian, which means the most significant value is at the lowest address. With a
read of a 16-bit (single register) value, the 1st byte returned is the MSB (most significant byte) and the 2nd
byte returned is the LSB (least significant byte). With a read of a 32-bit (2 register) value, the value is returned
MSW then LSW, where each word is returned MSB then LSB, so the 4 bytes come in order from most
significant to least significant.

We have seen some clients that expect Modbus to be implemented with big-endian bytes but with the least
significant word before the most significant word. In other words, the client software flips the order of the
words within a 32-bit value. For example, a read of TEST (address 55100) should return 0x00112233, but the
client returns 0x22330011.

Data Type Constants

Type Integer
Value

LJM_UINT16 0

LJM_UINT32 1

LJM_INT32 2

19 May 2019

https://labjack.com/support/datasheets/t-series/communication
https://labjack.com/support/software/api/modbus/protocol-details

LJM_FLOAT32 3

LJM_BYTE 99

LJM_STRING 98

Type Integer
Value

Sequential Addresses

Many registers are sequentially addressed. The Modbus Map gives you the starting address for the first
register, and then—depending on whether the data type is 16-bits or 32-bits—you increment the address by 1
or 2 to get the next value:

Address = StartingAddress + 1*Channel# (UINT16)

Address = StartingAddress + 2*Channel# (UINT32, INT32, FLOAT32)

Note that the term "register" is used 2 different ways throughout documentation:

A "register" is a location that has a value you might want to read or write (e.g. AIN0 or DAC0).
The term "Modbus register" generally refers to the Modbus use of the term, which is a 16-bit value
pointed to by an address of 0-65535.

Therefore, most "registers" consist of 1 or 2 "Modbus registers".

For example, the first entry in the Modbus Map has the name AIN#(0:254), which is shorthand notation for 255
registers named AIN0, AIN1, AIN2, ..., AIN254. The AIN# data type is FLOAT32, so each value needs 2
Modbus registers, an thus the address for a given analog input is channel*2 .

ljm_constants.json

LabJack distributes a constants file called ljm_constants.json that defines information about the Modbus register
map. The filter and search tool above pulls data from that JSON file.

The ljm_constants GitHub repository contains up-to-date text versions of the Modbus register map:

JSON - ljm_constants.json
C/C++ header - LabJackMModbusMap.h

3.1.1 Buffer Registers [T-Series Datasheet]
Log in or register to post comments

Overview

Most registers are written / read by address, but other registers are a special kind of register known as a Buffer
Register. Buffer Registers are for cases when multiple values must be written / read, but the number of values
are able to change. Buffer Registers produce multiple values when being read from and consume all values
being written. Buffer registers allow users to write a sequence of values to a single Modbus address. Typically
buffer registers have a companion _SIZE register that defines how many sequential values are about to be
sent to or read from a buffer register. Some would call them array registers, because you basically define the

19 May 2019

https://labjack.com/support/software/api/ljm/constants/ljmconstantsfile
https://github.com/labjack/ljm_constants
https://github.com/labjack/ljm_constants/blob/master/LabJack/LJM/ljm_constants.json
https://github.com/labjack/ljm_constants/blob/master/gen_output/LabJackMModbusMap.h
https://labjack.com/user/login?destination=node/3125%23comment-form
https://labjack.com/user/register?destination=node/3125%23comment-form

array size, and then pass the array of data into a single Modbus address.

For example, consider the difference between AIN0 and FILE_IO_PATH_READ:

Normal register:

AIN0 is at address 0 and is followed by AIN1 at address 2
AIN0 is a normal register
Reading an array of 4 registers starting at address 0 would read 2 registers from AIN0 and 2 registers
AIN1 (AIN values are FLOAT32, which each consist of 2 registers)

Buffer register:

FILE_IO_PATH_READ is at address 60652 and is followed by FILE_IO_WRITE at address 60654
FILE_IO_PATH_READ is a Buffer Register
Reading an array of 4 registers starting at address 60652 would read 4 registers
from FILE_IO_PATH_READ. FILE_IO_WRITE would not be read.
Note that users would first designate that 8 bytes are about to be read by writing a value of 8 to
FILE_IO_PATH_READ_LEN_BYTES.

In practice, the important differences are:

1. You don't need to know what registers follow a Buffer Register, you can simply write / read without
worrying about colliding with other registers

2. You can only write / read values sequentially. E.g. you cannot modify previously written values.
3. Define how much data to send/receive to/from the buffer register using the associated _NUM_BYTES, or

_SIZE, or _LEN register.
4. Often it is necessary to complete the transaction with an action register, such as _GO, or _OPEN, or

_ENABLE.

Buffer Registers, and their size definitions:

Serial Comm Systems

ASYNCH_DATA_RX
ASYNCH_DATA_TX
ASYNCH_NUM_BYTES_RX
ASYNCH_NUM_BYTES_TX
I2C_DATA_RX
I2C_DATA_TX
I2C_NUM_BYTES_RX
I2C_NUM_BYTES_TX
ONEWIRE_DATA_RX
ONEWIRE_DATA_TX
ONEWIRE_NUM_BYTES_RX
ONEWIRE_NUM_BYTES_TX
SPI_DATA_RX
SPI_DATA_TX
SPI_NUM_BYTES

File IO System

FILE_IO_PATH_READ

19 May 2019

FILE_IO_PATH_WRITE
FILE_IO_PATH_READ_LEN_BYTES
FILE_IO_PATH_WRITE_LEN_BYTES
FILE_IO_READ
FILE_IO_WRITE
FILE_IO_SIZE_BYTES

Lua Scripts/Debug Info

LUA_SOURCE_WRITE
LUA_SOURCE_SIZE
LUA_DEBUG_DATA
LUA_DEBUG_NUM_BYTES

Stream Out System

STREAM_OUT#(0:3)_BUFFER_F32
STREAM_OUT#(0:3)_BUFFER_U16
STREAM_OUT#(0:3)_BUFFER_U32
STREAM_OUT#(0:3)_BUFFER_ALLOCATE_NUM_BYTES

User RAM FIFOs

USER_RAM_FIFO#(0:3)_DATA_F32
USER_RAM_FIFO#(0:3)_DATA_I32
USER_RAM_FIFO#(0:3)_DATA_U16
USER_RAM_FIFO#(0:3)_DATA_U32
USER_RAM_FIFO#(0:3)_ALLOCATE_NUM_BYTES

WIFI

WIFI_SCAN_DATA
WIFI_SCAN_NUM_BYTES

Internal Flash

INTERNAL_FLASH_READ
INTERNAL_FLASH_WRITE

The above buffer registers can be identified in the LJM constants file as buffer registers by the "isBuffer":true
designation.

LJM

When using LJM, the Array functions are useful when reading from a buffer
(LJM_eReadAddressArray or LJM_eReadNameArray) or writing to a buffer
(LJM_eWriteAddressArray or LJM_eWriteNameArray).

3.2 Stream Mode [T-Series Datasheet]
Log in or register to post comments

19 May 2019

https://labjack.com/support/what-ljm-files-are-installed-my-machine
https://labjack.com/support/software/installers/ljm
https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddressarray
https://labjack.com/support/software/api/ljm/function-reference/ljmereadnamearray
https://labjack.com/support/software/api/ljm/function-reference/ljmewriteaddressarray
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenamearray
https://labjack.com/user/login?destination=node/3127%23comment-form
https://labjack.com/user/register?destination=node/3127%23comment-form

Stream Mode Overview

Streaming is a fast data input mode. It is more complicated than command-response mode, so it requires more
configuration. Using stream is simplified by the LJM stream functions; to stream without them, see 3.2.2 Low-
Level Streaming.

For a given stream session, a list of channels/addresses are sampled as input to the device. This list of
channels (known as a scan list) is input, as quickly as possible, immediately after a clock pulse. Stream clock
pulses are hardware-timed at a constant scan rate. By default, a stream session begins scanning immediately
after being started and continuously scans until stopped.

Stream can also output data.

Stream sessions can be configured to collect a limited number of scans. (See Burst Stream)

T7 only:

The T7 supports some advanced stream features:

Stream sessions can be configured to delay scanning until after the T7 detects a trigger
pulse.
Stream clock pulses can also be read externally at either a constant or a variable rate.

On This Page

Maximum Stream Speed
Stream-In and/or Stream-out
Streamable Registers
16-bit or 32-bit Data
Configuring AIN for Stream
Stream Timing
Channel-to-Channel Timing
Burst Stream
Externally-Clocked Stream - T7 Only
Triggered Stream - T7 Only

Maximum Stream Speed �

T4 Max Sample Rate: 40 ksamples/second

The T4 max sample rate is 40 ksamples/second. This is achievable for any single-address stream,
but for a multi-address stream this is only true when resolution index = 0 or 1.

T7 Max Sample Rate: 100 ksamples/second

19 May 2019

https://labjack.com/support/software/api/ljm/function-reference/stream-functions
https://labjack.com/support/datasheets/t-series/communication/stream-mode/low-level-streaming
#burst-stream
#stream-speed
#stream-in-vs-out
#streamable-registers
#16-vs-32-bit
#ain-stream
#stream-timing
#channel-to-channel-timing
#burst-stream
#externally-clocked
#triggered
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#stream-speed

The T7 max sample rate is 100 ksamples/second. This is achievable for any single-address stream,
but for a multi-address stream this is only true when resolution index = 0 or 1 and when range = +/-
10V for all analog inputs.

The max scan rate depends on how many addresses you are sampling per scan:

Address => The Modbus address of one channel. (See Streamable Registers, below.)
Sample => A reading from one address.
Scan => One reading from all addresses in the scan list.
SampleRate = NumAddresses * ScanRate

Examples:

For a T4 streaming 4 channels at resolution index=0, the max scan rate is 10 kscans/second (calculated
from 40 ksamples/second divided by 4).
For a T7 streaming 5 channels at resolution index=0 and all at range=+/-10V, the max scan rate is 20
kscans/second (calculated from 100 ksamples/second divided by 5).

Ethernet provides the best throughput: Ethernet is capable of the fastest stream rates. USB is typically a
little slower than Ethernet, and WiFi is much slower. For more information on speeds, see the Data Rates
Appendix.

Stream-In and/or Stream-Out �

There are three input/output combinations of stream mode:

Stream-in: The device collects data and streams it to the host.

Stream-out: The device does not collect data but streams it out. (See 3.2.1 Stream-Out)

Stream-in-out: The device collects data and streams it to the host. It also streams data out.

The stream channels determine which of these modes are used. Streamable channels may be either stream-in
or stream-out.

Streamable Registers �

The Modbus map shows which registers can be streamed (by expanding the "details" area). Input registers
that can be streamed include:

 For more information

AIN#
See 14.0 Analog
Inputs.

FIO_STATE See 13.0 Digital I/O.

EIO_STATE See 13.0 Digital I/O.

CIO_STATE See 13.0 Digital I/O.

MIO_STATE See 13.0 Digital I/O.

19 May 2019

#streamable-registers
https://labjack.com/support/datasheets/t7/appendix-a-1
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#stream-in-vs-out
https://labjack.com/support/datasheets/t7/communication/stream-mode/stream-out
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#streamable-registers
https://labjack.com/support/software/api/modbus/modbus-map
https://labjack.com/support/datasheets/t-series/ain
https://labjack.com/support/datasheets/t-series/digital-io
https://labjack.com/support/datasheets/t-series/digital-io
https://labjack.com/support/datasheets/t-series/digital-io
https://labjack.com/support/datasheets/t-series/digital-io

FIO_EIO_STATE See 13.0 Digital I/O.

EIO_CIO_STATE See 13.0 Digital I/O.

DIO#(0:22)_EF_READ_A
See 13.2 DIO
Extended Features.

DIO#
(0:22)_EF_READ_A_AND_RESET

See 13.2 DIO
Extended Features.

DIO#(0:22)_EF_READ_B
See 13.2 DIO
Extended Features.

CORE_TIMER
See 4.0 Hardware
Overview.

SYSTEM_TIMER_20HZ
See 4.0 Hardware
Overview.

STREAM_DATA_CAPTURE_16 See below.

For stream-out registers, see 3.2.1 Stream-Out.

16-bit or 32-bit Data �

Stream data is transferred as 16-bit values, but 32-bit data can be captured by
using STREAM_DATA_CAPTURE_16.

16-bit: In the normal case of an analog input such as AIN0, the 16-bit binary value is actually is what is
transferred and LJM converts it to a float on the host using the calibration constants that LJM reads before
starting the stream.

32-bit: Some streamable registers (e.g. DIO4_EF_READ_A) have 32-bit data. When streaming a register that
produces 32-bit data, the lower 16 bits (LSW) will be returned and the upper 16 bits (MSW) will be saved in
STREAM_DATA_CAPTURE_16. To get the full 32-bit value, add STREAM_DATA_CAPTURE_16 to the
stream scan list after any applicable 32-bit register, then combine the two values in software (LSW +
65536*MSW). Note that STREAM_DATA_CAPTURE_16 may be placed in multiple locations in the scan list.

Configuring AIN for Stream �

STREAM_SETTLING_US and STREAM_RESOLUTION_INDEX override the normal AIN configuration settling
and resolution registers.

Name Start
Address

Type Access

 STREAM_SETTLING_US Time in microseconds to allow
signals to settle after switching the mux. Does not apply to the 1st channel
in the scan list, as that settling is controlled by scan rate (the time from the
last channel until the start of the next scan). Default=0. When set to less
than 1, automatic settling will be used. The automatic settling behavior
varies by device.

4008 FLOAT32 R/W

19 May 2019

https://labjack.com/support/datasheets/t-series/digital-io
https://labjack.com/support/datasheets/t-series/digital-io
https://labjack.com/support/datasheets/t-series/digital-io/extended-features
https://labjack.com/support/datasheets/t-series/digital-io/extended-features
https://labjack.com/support/datasheets/t-series/digital-io/extended-features
https://labjack.com/support/datasheets/t-series/hardware-overview
https://labjack.com/support/datasheets/t-series/hardware-overview
#16-vs-32-bit
https://labjack.com/support/datasheets/t-series/communication/stream-mode/stream-out
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#16-vs-32-bit
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#ain-stream
https://labjack.com/support/datasheets/t-series/ain

 STREAM_RESOLUTION_INDEX The resolution index for
stream readings. A larger resolution index generally results in lower noise
and longer sample times.

4010 UINT32 R/WName Start
Address

Type Access

&print=true

The normal AIN configuration registers for range and negative channel still apply to stream.

T7 only: Stream mode is not supported on the hi-res converter. (Resolution indices 9-12 are not supported in
stream.)

Stream Timing �

When using LJM, there are three ways that stream can be too slow:

1. Sample rate is too high
2. Device buffer overflow
3. LJM buffer overflow

Sample rate is too high: When the sample rate is too high, it causes a STREAM_SCAN_OVERLAP error
and stream is terminated.

Scans are triggered by hardware interrupts. If a scan begins and the previous scan has not finished, the device
stops streaming and returns a STREAM_SCAN_OVERLAP error (errorcode 2942), which LJM returns
immediately upon the next call to LJM_eStreamRead.

Device buffer overflow: When the device buffer overflows, LJM inserts a dummy sample (with the
value -9999.0) in place of each skipped sample, or it causes a
STREAM_AUTO_RECOVER_END_OVERFLOW error and stream is terminated.

As samples are collected, they are placed in a FIFO buffer on the device until retrieved by the host. The size of
the buffer is variable and can be set to a maximum of 32768 bytes. Write to STREAM_BUFFER_SIZE_BYTES
to set the buffer size.

Name Start
Address

Type Access

 STREAM_BUFFER_SIZE_BYTES Size of the stream data buffer
in bytes. A value of 0 equates to the default value. Must be a power of 2. Si…
in samples is STREAM_BUFFER_SIZE_BYTES/2. Size in scans is
(STREAM_BUFFER_SIZE_BYTES/2)/STREAM_NUM_ADDRESSES.
Changes while stream is running do not affect the currently running stream.

4012 UINT32 R/W

&print=true

If the device buffer overflows, the device will continue streaming but will discard data until the buffer is
emptied, after which data will be stored in the buffer again. The device keeps track of how many scans are
discarded and reports that value. Based on the number of scans discarded, the LJM library adds the proper
number of dummy samples (with the value -9999.0) such that the correct timing is maintained. This will only
work if the first channel in the scan is an analog channel.

If the device buffer overflows for too much time, a STREAM_AUTO_RECOVER_END_OVERFLOW error
occurs and stream is terminated.

19 May 2019

http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#stream-timing
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread

If the device buffer is overflowing, see the LJM stream help page for some mitigation strategies.

LJM buffer overflow: When the LJM buffer overflows, it causes a LJME_LJM_BUFFER_FULL error and
stream is terminated.

LJM reads samples from the device buffer and buffers them internally. LJM reads these samples in an internal
thread, regardless of what your code does. LJM's buffer can run out of space if it is not read often enough
using LJM_eStreamRead, so make sure the LJMScanBacklog parameter does not continually increase.

LJM_eStreamRead blocks until enough data is read from the device, so your code does not need to perform
waits.

If the LJM buffer is overflowing, see the LJM stream help page for some mitigation strategies.

Channel-to-Channel Timing �

Channels in a scan list are input or output as quickly as possible after the start of a scan, in the order of the
scan list.

Timing pulses are generated on SPC so that the channel-to-channel timing can be measured. Pulses on SPC
are as follows:

Falling edge at the start of a scan.
Rising edge at the start of a sample.
Falling edge at the end of a sample.
Rising edge at the end of a scan.

Burst Stream �

Burst stream is when stream collects a pre-determined number of scans, then stops. To set the stream burst
size, write to STREAM_NUM_SCANS:

Name Start
Address

Type Access

 STREAM_NUM_SCANS The number of scans to run before
automatically stopping (stream-burst). 0 = run continuously. Limit for
STREAM_NUM_SCANS is 2^32-1, but if the host is not reading data as fast
as it is acquired you also need to consider
STREAM_BUFFER_SIZE_BYTES.

4020 UINT32 R/W

&print=true

The LJM library collects burst stream data with the StreamBurst() function.

It may be beneficial to set STREAM_BUFFER_SIZE_BYTES to a large value for fast burst stream. See above
for details about STREAM_BUFFER_SIZE_BYTES.

T7-Pro only: Burst stream is well-suited for WiFi connections, because WiFi has a lower throughput than other
connection types.

Externally Clocked Stream - T7 Only �

19 May 2019

https://labjack.com/support/software/api/ljm/streaming-lots-of-9999-values
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/streaming-lots-of-9999-values
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#channel-to-channel-timing
https://labjack.com/support/datasheets/t-series/spc
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#burst-stream
https://labjack.com/support/software/api/ljm/function-reference/ljmstreamburst
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#externally-clocked

Externally-clocked stream allows T-series devices to stream from external pulses. It also allows
for variable stream scan rates.

Clock Source: The scan rate is generated from the internal crystal oscillator. Alternatively, the scan
rate can be a division of an external clock provided on CIO3.

Name Start
Address

Type Access

 STREAM_CLOCK_SOURCE Controls which clock
source will be used to run the main stream clock. 0 = Internal crystal,
2 = External clock source on CIO3. Rising edges will increment a
counter and trigger a stream scan after the number of edges
specified in STREAM_EXTERNAL_CLOCK_DIVISOR. T7 will
expect external stream clock on CIO3. All other values reserved.

4014 UINT32 R/W

&print=true

To subdivide the external clock pulses for a slower scan rate,
use STREAM_EXTERNAL_CLOCK_DIVISOR.

Name Start
Address

Type Access

 STREAM_EXTERNAL_CLOCK_DIVISOR The number
of pulses per stream scan when using an external clock.

4022 UINT32 R/W

&print=true

To use externally clocked stream with LJM, see the externally clocked stream section of the LJM
User's Guide.

Triggered Stream - T7 Only �

19 May 2019

https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#externally-clocked
http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#triggered

T7 minimum firmware 1.0186

Stream can be configured to start scanning when a trigger is detected. Trigger sources are DIO_EF
modes:

Frequency In
Pulse Width In
Conditional Reset

Frequency In and Conditional Reset allow you to select rising or falling edges and Pulse Width In will
trigger from either edge.

See Appendix A for hysteresis voltage information.

Configuring stream to use a trigger requires setting up a DIO_EF and adding the
STREAM_TRIGGER_INDEX register to normal stream configuration.

Name Start
Address

Type Access

 STREAM_TRIGGER_INDEX Controls when stream
scanning will start. 0 = Start when stream is enabled, 2000 = Start
when DIO_EF0 detects an edge, 2001 = Start when DIO_EF1
detects an edge. See the stream documentation for all supported
values.

4024 UINT32 R/W

&print=true

STREAM_TRIGGER_INDEX (address 4024):

0 = No trigger. Stream will start when Enabled.
2000 = DIO_EF0 will start stream.
2001 = DIO_EF1 will start stream.
2002 = DIO_EF2 will start stream.
2003 = DIO_EF3 will start stream.
2006 = DIO_EF6 will start stream.
2007 = DIO_EF7 will start stream.

To use triggered stream with LJM, see the triggered stream section of the LJM User's Guide.

A more complicated stream trigger can be implemented with a Lua script. For example, a Lua script
could check for an arbitrary stream trigger condition in conjunction with triggered stream being started
as normal. Once the Lua script detects that the stream condition is fulfilled, it writes a pulse to a digital
out (such as DIO3) which is then detected by the normal trigger (as specified by
STREAM_TRIGGER_INDEX).

3.2.1 Stream-Out (Advanced) [T-Series Datasheet]
Log in or register to post comments

19 May 2019

https://labjack.com/support/datasheets/t-series/digital-io/extended-features/frequency
https://labjack.com/support/datasheets/t-series/digital-io/extended-features/pulse-width
https://labjack.com/support/datasheets/t-series/digital-io/extended-features/conditional-reset
https://labjack.com/support/datasheets/t-series/appendix-a-2
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#triggered
https://labjack.com/support/datasheets/t-series/lua-scripting
https://labjack.com/user/login?destination=node/3201%23comment-form
https://labjack.com/user/register?destination=node/3201%23comment-form

Stream-Out (Advanced) Overview

Stream-out is a set of streamable registers that move data from a buffer to an output. The output can be digital
I/O (DIO) or a DAC. The buffer can be read linearly to generate a irregular waveform or be read in a looping
mode to generate a periodic waveform.

A T-series device can output up to 4 waveforms using stream-out.

In terms of timing and data rates, stream-out channels count the same as input channels so see the normal
documentation of Streaming Data Rates.

Alternate waveform generation techniques are described in the Waveform Generation App Note.

Performing Stream-Out

For each waveform being streamed out:

1. Choose which target channel will output the waveform
2. Configure stream-out

1. STREAM_OUT#_TARGET
2. STREAM_OUT#(0:3)_BUFFER_ALLOCATE_NUM_BYTES
3. STREAM_OUT#(0:3)_ENABLE

3. Update the stream-out buffer
1. STREAM_OUT#(0:3)_LOOP_NUM_VALUES
2. STREAM_OUT#(0:3)_BUFFER_F32 or STREAM_OUT#(0:3)_BUFFER_U16
3. STREAM_OUT#(0:3)_SET_LOOP

4. Start stream with STREAM_OUT#(0:3) in the scan list
5. Stream loop: read and update buffer as needed
6. Stop stream

Executing stream-out for multiple output waveforms is a matter of performing the above steps in the order
above and using corresponding STREAM_OUT#(0:3) addresses in the scan list.

1. Target Selection

The following target list represents the I/O on the device that can be configured to output a waveform using
stream out. The list includes the analog and digital output lines.

DAC0
DAC1
FIO_STATE
FIO_DIRECTION
EIO_STATE
EIO_DIRECTION
CIO_STATE
CIO_DIRECTION
MIO_STATE
MIO_DIRECTION

2. Configure Stream-Out

Configuration will set the buffer size and target. The target specifies which physical I/O to use. Data in the

19 May 2019

https://labjack.com/support/datasheets/t-series/appendix-a-1
https://labjack.com/support/app-notes/waveform-generation

buffer will be output onto the target I/O as a generated waveform.

Stream-Out Configuration

Name Start
Address

Type Access

 STREAM_OUT#(0:3)_TARGET Channel that data will be written
to. Before writing data to _BUFFER_###, you must write to _TARGET so the
device knows how to interpret and store values.

4040 UINT32 R/W

 STREAM_OUT#(0:3)_BUFFER_ALLOCATE_NUM_BYTES Size
of the buffer in bytes as a power of 2. Should be at least twice the size of
updates that will be written and no less than 32. Before writing data to
BUFFER###, you must write to _BUFFER_ALLOCATE_NUM_BYTES to
allocate RAM for the data. Max is 16384.

4050 UINT32 R/W

 STREAM_OUT#(0:3)_ENABLE Write 1 to enable, 0 to disable.
When enabled, you get 1 update per target per stream scan, so a stream
must be active for updates to happen.

4090 UINT32 R/W

&print=true

Configuration can be done before or after stream has started.

3. Update Buffer

Each stream-out has its own buffer. Data is loaded into the buffer by writing to the appropriate buffer register.
Output waveform data points are stored in the buffer as 16-bit values, so values greater than 16-bits will be
converted automatically before being stored in the buffer. Use only one buffer per STREAM_OUT channel.

For outputting an analog waveform (DAC output), write an array of floating-point numbers to the
STREAM_OUT#(0:3)_BUFFER_F32 register.

For outputting a digital waveform, pass an array of integer 0 or 1 values to the STREAM_OUT#
(0:3)_BUFFER_U16 register.

Stream-Out Buffers

Name Start
Address

Type Access

 STREAM_OUT#(0:3)_BUFFER_U16 Data destination when
sending 16-bit integer data. Each value uses 2 bytes of the stream-out
buffer. This register is a buffer.

4420 UINT16 W

 STREAM_OUT#(0:3)_BUFFER_F32 Data destination when
sending floating point data. Appropriate cal constants are used to convert
F32 values to 16-bit binary data, and thus each of these values uses 2
bytes of the stream-out buffer. This register is a buffer.

4400 FLOAT32 W

&print=true

Once the waveform data points are stored, configure STREAM_OUT#(0:3)_LOOP_SIZE and STREAM_OUT#

19 May 2019

(0:3)_SET_LOOP.

Stream-Out Waveform Periodicity

Name Start
Address

Type Access

 STREAM_OUT#(0:3)_LOOP_SIZE The number of values, from
the end of the array, that will be repeated after reaching the end of supplied
data array.

4060 UINT32 R/W

 STREAM_OUT#(0:3)_SET_LOOP Controls when new data and
loop size are used. 1=Use new data immediately. 2=Wait for synch. New
data will not be used until a different stream-out channel is set to Synch.
3=Synch. This stream-out# as well as any stream-outs set to synch will start
using new data immediately.

4070 UINT32 W

&print=true

4. Start stream

Next, start stream with STREAM_OUT#(0:3) in the scan list.

Name Start
Address

Type Access

 STREAM_OUT#(0:3) Include one or more of these registers in
STREAM_SCANLIST_ADDRESS#(0:127) to trigger stream-out updates.
When added to the scan list these do count against the max scan rate just
like normal input addresses, but they do not return any data in the stream
read.

4800 UINT16 R

&print=true

The order of STREAM_OUT#(0:3) in the scan list determines when the target updated. For example,
if STREAM_OUT3 is before STREAM_OUT0 in the scan list, STREAM_OUT3_TARGET will be updated
before STREAM_OUT0_TARGET.

5. Stream Loop

Read from stream, if there are stream-in channels.

Also, if the output waveform needs to be updated, read STREAM_OUT#(0:3)_BUFFER_STATUS to determine
when to write new values to the buffer. When to write values depends on how large the buffer is and how
many values need to be written.

Name Start
Address

Type Access

 STREAM_OUT#(0:3)_BUFFER_STATUS The number of values
in the buffer that are not currently being used.

4080 UINT32 R

19 May 2019

&print=true

For a more thorough description of how a Stream-Out buffer works, see 3.2.1.1 Stream-Out Description.

6. Stop stream

Stopping a stream that streams out is no different from stopping stream-in.

Example

This example demonstrates how to configure DAC0 to output an analog waveform that resembles a triangle
wave, and also quickly measure two analog inputs AIN0 and AIN2 in streaming context.

Configuration steps specific to stream-out

STREAM_OUT0_ENABLE = 0 –> Turn off just in case it was already on.
STREAM_OUT0_TARGET = 1000 –> Set the target to DAC0.
STREAM_OUT0_BUFFER_SIZE = 512 –> A buffer to hold up to 256 values.
STREAM_OUT0_ENABLE = 1 –> Turn on Stream-Out0.

With the LJM library, write these registers with a call to eWriteNames or multiple calls to eWriteName.

General stream configuration

STREAM_SCANLIST_ADDRESS0= AIN0 –> Add AIN0 to the list of things to stream in.
STREAM_SCANLIST_ADDRESS1= STREAM_OUT0 –> Add STREAM_OUT0 (DAC0 is target) to the list of things to stream out.
STREAM_SCANLIST_ADDRESS2= AIN2 –> Add AIN2 to the list of things to stream in.
STREAM_ENABLE = 1 –> Start streaming. LJM_eStreamStart does this.

With the LJM library, this is all done with the call to eStreamStart.

Other settings related to streaming analog inputs have been omitted here but are covered under the section for
stream mode.

Load the waveform data points

The following data points have been chosen to produce the triangle waveform: 0.5V, 1V, 1.5V, 1V, so the next
step is to write these datum to the appropriate buffer. Because it is a DAC output (floating point number), use
the STREAM_OUT0_BUFFER_F32 register.

STREAM_OUT0_BUFFER_F32 = [0.5, 1, 1.5, 1] –> Write the four values one at a time or as an array.
STREAM_OUT0_LOOP_SIZE = 4 –> Loop four values.
STREAM_OUT0_SET_LOOP = 1 –> Begin using new data set immediately.

With the LJM library, write the array using eWriteNameArray, and write the other 2 values with a call to
eWriteNames or multiple calls to eWriteName.

Observe result with stream mode

Every time the stream is run, AIN0 is read, then DAC0 is updated with a data point from Stream-Out0's buffer,
then AIN2 is read. Thus, the streaming speed dictates the frequency of the output waveform.

Sequential Data

Once a sequence of values has been set via the STREAM_OUT#_SET_LOOP register, that sequence of

19 May 2019

https://labjack.com/support/datasheets/t-series/communication/stream-mode/stream-out/stream-out-description
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart
https://labjack.com/support/datasheets/t7/communication/stream-mode

values will loop and only be interrupted at the end of the sequence. Therefore, to have stream-out continuously
output a sequence of values that is larger than the size of one stream out buffer, probably the easiest way to
do so is to:

1. Start by dividing the stream out buffer into 2 halves,

2. Write one half of the buffer with your sequential data,

3. In a loop, every time the STREAM_OUT#_BUFFER_STATUS reads as being half full/empty, write another
half buffer-worth of values.

Note that the buffer is a circular array, so you could end up overwriting values if you're not careful.

Here's an example:

Stream-out buffer is 512 bytes, divide that by 2 to get the number of samples the buffer can hold => 256
samples

256 samples divided by 2 to get the "loop" size, AKA the set-of-data-to-be-written-at-a-time size => 128
samples

Write 128 samples:

Write 128 to STREAM_OUT0_LOOP_SIZE

Write 128 samples to STREAM_OUT0_BUFFER_F32 (This should probably be done by array write,
which is much faster than writing values individually.)

Write 1 to STREAM_OUT0_SET_LOOP

Loop while you have more sequential data to write:

Read STREAM_OUT0_BUFFER_STATUS

If STREAM_OUT0_BUFFER_STATUS is 128 or greater, write the next 128 samples, along
with STREAM_OUT0_LOOP_SIZE = 128 and STREAM_OUT0_SET_LOOP = 1

Sleep for something like 1 / scanRate seconds to prevent unnecessary work for the hardware

3.2.1.1 Stream-Out Description [T-Series Datasheet]
Log in or register to post comments

T-Series Stream-Out Animation/Presentation

The T-Series Stream-Out presentation is only viewable online. Please go to our website
https://labjack.com/support/datasheets/t-series/communication/stream-mode/stream-out/stream-out-
description.

19 May 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamearray
https://labjack.com/user/login?destination=node/3203%23comment-form
https://labjack.com/user/register?destination=node/3203%23comment-form
https://labjack.com/support/datasheets/t-series/communication/stream-mode/stream-out/stream-out-description

3.2.2 Low-Level Streaming [T-Series Datasheet]
Log in or register to post comments

Overview

Stream mode is complicated but can easily be executed using the high-level LJM stream functions. LJM is
recommend for all users, except users that need to integrate a T-series device into a system that cannot use
LJM. The rest of this section is about manually executing stream protocol without LJM. For an introduction to
stream and for additional configurations, see 3.2 Stream Mode.

Executing stream mode involves the following:

Stream setup
Stream start
Stream-in data collection, if any stream includes stream-in channels
Stream-out buffer updates, if stream includes stream-out channels (See 3.2.1 Stream-Out)
Stream stop

Spontaneous Stream vs. Command-Response Stream:

Data can be sent to the host in one of two data collection modes:

Spontaneous: In spontaneous mode, packets are automatically sent to the host as soon as there is
enough data to fill a packet. The packet size is adjustable. See the register definitions below.
Command-Response (CR): In CR mode, the stream data is stored in the device’s buffer and must be
read out using a command. CR mode is useful for when the connection is unreliable.

T-series devices connected via either USB and Ethernet are capable of both spontaneous stream and
command-response stream.

T7-Pro only: T7-Pro devices connected via WiFi are capable of only command-response stream.

Setup

Manual stream setup requires configuration of the registers that LJM_eStreamStart automatically configures:

Manual Stream Setup

Name Start
Address

Type Access

 STREAM_SCANRATE_HZ Write a value to specify the number
of times per second that all channels in the stream scanlist will be read.
Max stream speeds are based on Sample Rate which is
NumChannels*ScanRate. Has no effect when using and external clock. A
read of this register returns the actual scan rate, which can be slightly
different due to rounding. For scan rates >152.588, the actual scan interval
is multiples of 100 ns. Assuming a core clock of 80 MHz the internal roll
value is (80M/(8*DesiredScanRate))-1 and the actual scan rate is then
80M/(8*(RollValue+1). For slower scan rates the scan interval resolution is
changed to 1 us, 10 us, 100 us, or 1 ms as needed to achieve the longer
intervals.

4002 FLOAT32 R/W

19 May 2019

https://labjack.com/user/login?destination=node/3202%23comment-form
https://labjack.com/user/register?destination=node/3202%23comment-form
https://labjack.com/support/ljm/users-guide/function-reference/stream-functions
https://labjack.com/support/datasheets/t7/communication/stream-mode
https://labjack.com/support/datasheets/t7/communication/stream-mode/stream-out
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart

 STREAM_NUM_ADDRESSES The number of entries in the
scanlist 4004 UINT32 R/W

 STREAM_SAMPLES_PER_PACKET Specifies the number of
data points to be sent in the data packet. Only applies to spontaneous
mode.

4006 UINT32 R/W

 STREAM_AUTO_TARGET Controls where data will be sent.
Value is a bitmask. bit 0: 1 = Send to Ethernet 702 sockets, bit 1: 1 = Send
to USB, bit 4: 1 = Command-Response mode. All other bits are reserved.

4016 UINT32 R/W

 STREAM_SCANLIST_ADDRESS#(0:127) A list of addresses to
read each scan. In the case of Stream-Out enabled, the list may also
include something to write each scan.

4100 UINT32 R/W

 STREAM_ENABLE Write 1 to start stream. Write 0 to stop
stream. Reading this register returns 1 when stream is enabled. When
using a triggered stream the stream is considered enabled while waiting for
the trigger.

4990 UINT32 R/W

Name Start
Address

Type Access

&print=true

Additional Configuration Notes

Additionally, address 4018 (STREAM_DATATYPE) must be written with the value 0. Note that address 4018
(STREAM_DATATYPE) is not in ljm_constants.json and is not compatible with LJM_NameToAddress.

STREAM_ENABLE must be written last.

For other stream configuration registers, which are not required for all streams, see 3.2 Stream Mode.

Data Collection

Spontaneous Stream: Once stream has been initiated with STREAM_ENABLE, the device sends data to the
target indicated by STREAM_AUTO_TARGET until STREAM_ENABLE is written with the value 0. Stream-out
streams that do not contain stream-in channels (see above) do not send data.

Modbus Feedback Spontaneous Packet Protocol:

Bytes 0-1: Transaction ID

Bytes 2-3: Protocol ID

Bytes 4-5: Length, MSB-LSB

Bytes 6: 1 (Unit ID)

Byte 7: 76 (Function #)

Byte 8: 16

Byte 9: Reserved

19 May 2019

https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnametoaddress
https://labjack.com/support/datasheets/t-series/communication/stream-mode

Bytes 10-11: Backlog Bytes

Bytes 12-13: Status Code

Byte 14-15: Additional status information

Byte 16+: Stream Data (raw sample = 2 bytes MSB-LSB)

Command-Response Stream: When collecting data using command-response stream mode, data must be
read from STREAM_DATA_CR (address 4500). Data is automatically discarded as it is read.

Modbus Feedback Command-Response Packet Protocol:

Bytes 0-1: Transaction ID

Bytes 2-3: Protocol ID

Bytes 4-5: Length, MSB-LSB

Bytes 6: 1 (Unit ID)

Byte 7: 76 (Function #)

Bytes 8-9: Number of samples in this read

Bytes 10-11: Backlog Bytes

Bytes 12-13: Status Code

Byte 14-15: Additional status information

Byte 16+: Stream Data (raw sample = 2 bytes MSB-LSB)

Backlog Bytes:

Backlog Bytes is the number bytes contained in the device stream buffer after reading. To
convert BacklogBytes to the number of scans still on the device:

BacklogScans = BacklogBytes / (bytesPerSample * samplesPerScan)

Where bytesPerSample is 2 and samplesPerScan is the number of channels.

Status Codes:

2940: Auto-recovery Active.
2941: Auto-recovery End. Additional Status Information is the number of scans skipped. A scan
consisting of all 0xFFFF values indicates the separation between old data and new data.
2942: Scan Overlap
2943: Auto-recovery End Overflow
2944: Stream Burst Complete

Stop

To stop stream, write 0 to STREAM_ENABLE. All stream modes expect to be stopped, except for burst stream
(see STREAM_NUM_SCANS for more information on bust stream).

19 May 2019

Code Example �

A general low-level stream example written in C/C++ can be found here.

19 May 2019

http:///tmp/wktemp-f74c2603-95b5-4fd3-b949-055b8339881c.html#code
https://labjack.com/support/modbus/programming/c

	3.0 Communication [T-Series Datasheet]
	Overview
	Communication Options
	Applications
	High-level LJM library
	Direct Modbus TCP, Clients

	Communication Speed Considerations
	Command-Response
	Stream Mode

	3.1 Modbus Map [T-Series Datasheet]
	Modbus Map Tool
	Also On This Page

	Usage
	Protocol
	0-Based Addressing
	Single Overlapping Map of Addresses from 0-65535
	Big-Endian
	Data Type Constants
	Sequential Addresses
	ljm_constants.json

	3.1.1 Buffer Registers [T-Series Datasheet]
	Overview
	Serial Comm Systems
	File IO System
	Lua Scripts/Debug Info
	Stream Out System
	User RAM FIFOs
	WIFI
	Internal Flash

	3.2 Stream Mode [T-Series Datasheet]
	Stream Mode Overview
	On This Page

	Maximum Stream Speed 🔗
	Stream-In and/or Stream-Out 🔗
	Streamable Registers 🔗
	16-bit or 32-bit Data 🔗
	Configuring AIN for Stream 🔗
	Stream Timing 🔗
	Channel-to-Channel Timing 🔗
	Burst Stream 🔗
	Externally Clocked Stream - T7 Only 🔗
	Triggered Stream - T7 Only 🔗

	3.2.1 Stream-Out (Advanced) [T-Series Datasheet]
	Stream-Out (Advanced) Overview
	Performing Stream-Out
	1. Target Selection
	2. Configure Stream-Out
	Stream-Out Configuration

	3. Update Buffer
	Stream-Out Buffers
	Stream-Out Waveform Periodicity

	4. Start stream
	5. Stream Loop
	6. Stop stream

	Example

	3.2.1.1 Stream-Out Description [T-Series Datasheet]
	T-Series Stream-Out Animation/Presentation

	3.2.2 Low-Level Streaming [T-Series Datasheet]
	Overview
	Setup
	Manual Stream Setup

	Data Collection
	Stop
	Code Example 🔗

